Multiple positive solutions of a semipositone singular boundary value problem on time scales
نویسندگان
چکیده
منابع مشابه
Triple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian
In this paper, we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian dynamic equation on time scales. We prove the existence at least three positive solutions of the boundary value problem by using the Avery and Peterson fixed point theorem. The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly. Our results ...
متن کاملMultiple Positive Solutions of a Singular Semipositone Integral Boundary Value Problem for Fractional q-Derivatives Equation
and Applied Analysis 3 The q-integral of a function f defined in the interval [0, b] is given by
متن کاملMultiple Positive Solutions of a Second Order Nonlinear Semipositone m-Point Boundary Value Problem on Time Scales
and Applied Analysis 3 For the rest of the paper we need the following assumption: C3 0 < ∑m−2 i 1 αiφ1 ηi < 1. Lemma 2.2 see 1 . Assuming that (C2) and (C3) hold. Let y ∈ C ρ 0 , σ 1 . Then boundary value problem xΔ∇ t a t xΔ t b t x t y t 0, t ∈ 0, 1 T , x ( ρ 0 ) 0, x σ 1 m−2 ∑ i 1 αix ( ηi ) 2.3 is equivalent to integral equation
متن کاملMultiple positive solutions to third-order three-point singular semipositone boundary value problem
By using a specially constructed cone and the fixed point index theory, this paper investigates the existence of multiple positive solutions for the third-order three-point singular semipositone BVP: x ′′′ (t) − λ f (t, x) = 0, t ∈ (0, 1); x(0) = x ′ (η) = x ′′ (1) = 0, where 1 2 < η < 1, the non-linear term f (t, x): (0, 1) × (0, +∞) → (−∞, +∞) is continuous and may be singular at t = 0, t = 1...
متن کاملPositive Symmetric Solutions of Singular Semipositone Boundary Value Problems
Using the method of upper and lower solutions, we prove that the singular boundary value problem, −u = f(u) u in (0, 1), u(0) = 0 = u(1) , has a positive solution when 0 < α < 1 and f : R → R is an appropriate nonlinearity that is bounded below; in particular, we allow f to satisfy the semipositone condition f(0) < 0. The main difficulty of this approach is obtaining a positive subsolution, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2013
ISSN: 1687-1847
DOI: 10.1186/1687-1847-2013-335